Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,4-Dimethyl-4,5-dihydro-1H-1,5-benzo-diazepin-2(3H)-one

Naghmana Rashid, ${ }^{\text {a }}$ * Mashooda Hasan, ${ }^{\text {a }}$ Nurdiyana M. Yusof ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Allama Iqbal Open University, H-8, Islamabad, Pakistan, and
${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Univeriti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia

Correspondence e-mail: nrk_chem@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.100$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$, the diazepine ring adopts a skewed boat conformation. The molecule is stabilized by $\mathrm{N}-$ H. . OO intermolecular hydrogen bonds, forming a zigzag chain parallel to the b axis.

Comment

Benzodiazepines are among the most important scaffolds in medicinal chemistry, representing the prototypical 'privileged structure' (Evans et al. 1988). Compounds based on the diazepine skeleton are psychotherapeutic agents widely used for the treatment of anxiety and neurosis (Sternbach, 1978). The derivatives of 1,5-benzodiazepin-2-one belong to a pharmacologically important subclass of benzodiazepines represented by the commercially available drug Lofendazam [7-chloro-5-phenyl-4,5-dihydro- $1 H$-1,5-benzodiazepin-2(3H)one]. The idea that the biological activity of this type of compounds depends not only on the pharmacophoric grouping but also on the conformation of the sevenmembered ring (Aversa et al., 1981) prompted us to investigate its crystal structure.

(I)

The diazepine ring (Fig. 1) adopts a somewhat skewed boat conformation compared to the flat boat in 6,7-dimethyl-5-phenyl-1H-thieno[2,3-e][1,4]diazepin-2(3H)-one (Scammells et al., 2001). The bond lengths and angles in (I) are in normal ranges (Allen et al., 1987).

In the crystal structure, the molecules are linked by N $\mathrm{H} \cdots \mathrm{O}$ (Table 1) forming a zigzag chain of dimers (Fig. 2) parallel to the b axis.

Experimental

Equimolar quantities of 1,2-phenylenediamine ($1.08 \mathrm{~g}, 0.01 \mathrm{~mol}$) and 3-methylbut-2-enoic acid ($1.00 \mathrm{~g}, 0.01 \mathrm{~mol}$) were refluxed in 4 N HCl (30 ml) for 8 h to synthesize the title compound, (I), following a previously reported procedure (Hasan et al., 1990). After neutral-

Received 18 November 2006
Accepted 21 November 2006

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probablity level.

Figure 2
The packing of (I), viewed down the a axis. The intermolecular hydrogen bonds are denoted by dashed lines.
ization with sodium carbonate, the solid obtained was washed with water and purified by coloumn chromatography using silica gel in petroleum ether-acetone $(1: 4)\left(R_{\mathrm{F}}=0.15\right)$ and recrystallized from ethanol (yield: $10 \%, 190 \mathrm{mg}$; m.p. 526 K).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=190.24$
Monoclinic, $P 2_{1} / n$
$a=9.355(3) \AA$ 。
$b=10.335$ (3) \AA
$c=10.781$ (3) \AA
$\beta=91.106(6)^{\circ}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.213 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.50 \times 0.48 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

$V=1042.1(5) \AA^{3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.961, T_{\text {max }}=0.982$
5658 measured reflections 2048 independent reflections 1656 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.100$
$S=1.04$
2048 reflections
138 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0418 P)^{2}\right. \\
\quad \quad+0.1994 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.12 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.050(4)
\end{array}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.863(14)$	$2.175(14)$	$3.0105(18)$	$162.9(13)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.869(11)$	$2.014(11)$	$2.8824(18)$	$179.4(13)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y+1,-z$.

H atoms on C were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\text {eq }}(\mathrm{C})$ where $x=1.5$ for methyl and $x=1.2$ for other H atoms. H atoms attached to N were refined isotropically.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors are grateful to both Allama Iqbal Open University and Universiti Kebangsaan Malaysia for the research facilities.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Aversa, M. C., Giannetto, P., Romeo, G. \& Vigorita, M. G. (1981). Org. Magn. Reson., 15, 394-398.
Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. \& Hirschfield, J. (1988). J. Med. Chem. 31, 2235-2246.
Hasan, M., Malik, F., Alvarez, M. C. G., Yunus, U., Rashid, N. \& Maqbool, Z. (1990). J. Chem. Soc. Pak. 1, 80-83.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Scammells, P. J., Tranberg, C. E. \& Tiekink, E. R. T. (2001). Acta Cryst. E57, o344-o345.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sternbach, L. H. (1978). Prog. Drug Res. 22, 229-266.

[^0]: © 2006 International Union of Crystallography All rights reserved

